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Past 60+ years: detailed view of quark 
structure of nucleons
Gluonic structure (beyond gluon  
density) relatively unexplored

Gluon Structure of N* spectrum
Better understand and classify N* 
resonances
Identify gluonic excitations

Electron-Ion Collider
Priority in 2015 nuclear physics long  
range plan
“Understanding the glue that binds us all”

Insights from Lattice QCD?

Gluon Structure
Motivation
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Electron Ion Collider:
The Next QCD Frontier

Understanding the glue 
that binds us all
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3Ultimate eRHIC design 
Highly advanced and energy efficient accelerator

Peak luminosity: 2 � 1034 cm-2 s-1

ERL, permanent magnet arcs and 
strong cooling of proton beam 
greatly reduce electric power 
consumption to about 15 MW!
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(in cost-optimized scheme)

650 MHz SRF
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EIC at JLab: JLEIC 
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Studying gluonic structure of hadrons/nuclei is hard

Gluon probed only indirectly in electron scattering from 
hadrons/nuclei (does not couple to photon) 

Other processes less clean: heavy flavour production

Quarks and gluons mix via evolution
Uniquely quarky: nonsinglet quantities
Uniquely gluonic: double helicity flip/ gluonic 
transversity

Gluonic Structure



Leading twist gluon parton distribution Δ(x,Q2):  
double helicity flip [Jaffe & Manohar 1989]

Unambiguously gluonic: no analogous quark PDF at twist-2

Non-vanishing in forward limit for targets with spin≥1

Experimentally measurable in unpolarised electron DIS  
on polarised target

Nitrogen target: JLab LoI 2015

Polarised nuclei at EIC

Moments calculable in LQCD

Gluonic Transversity

Outline
1 Double Helicity Flip Structure

Function
Measurement Approaches

2 Je↵erson Lab Measurement
JLab Polarized Target

3 Gluonometry at the EIC
Polarized Ion Beams



Double helicity flip structure function Δ(x,Q2)

Gluonic Transversity

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Double helicity flip amplitude:
Photon helicity
Target helicity
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Changes both photon and target helicity by 2 units



Double Helicity Flip Gluon Structure Function: �(x,Q2)

Parton model interpretation

For a target in the infinite momentum frame polarized in the x̂ direction
perpendicular to its momentum,

�(x,Q2) /
Z 1

x

dy

y3

�
g
x̂

(y,Q2) � g
ŷ

(y,Q2)
�

g
x̂,ŷ

(y,Q2): probability of finding a gluon with momentum fraction y
linearly polarized in the x̂, ŷ direction

“How much more momentum of transversely polarized particle carried by
gluons aligned rather than perpendicular to it in the transverse plane”
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Double helicity flip structure function Δ(x,Q2)

Hadrons: Gluonic Transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum fraction y linearly 
polarised in        direction

Nuclei: Exotic Glue
gluons not associated  
with individual nucleons  
in nucleus

Gluonic Transversity

‘Exotic’ Glue in the Nucleus
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hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

3

where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

⇥
g

x̂

(y,Q2)� g

ŷ

(x,Q2)
⇤



Double Helicity Flip Gluon Structure Function: �(x,Q2)

Parton model interpretation

For a target in the infinite momentum frame polarized in the x̂ direction
perpendicular to its momentum,

�(x,Q2) /
Z 1

x

dy

y3

�
g
x̂

(y,Q2) � g
ŷ
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(y,Q2): probability of finding a gluon with momentum fraction y
linearly polarized in the x̂, ŷ direction

“How much more momentum of transversely polarized particle carried by
gluons aligned rather than perpendicular to it in the transverse plane”

Phiala Shanahan (MIT) Exotic Glue in the Nucleus July 8, 2016 8 / 23

Double helicity flip structure function Δ(x,Q2)

Hadrons: Gluonic Transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum fraction y linearly 
polarised in        direction

Nuclei: Exotic Glue
gluons not associated  
with individual nucleons  
in nucleus

Gluonic Transversity

‘Exotic’ Glue in the Nucleus
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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0
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Moments of Δ(x,Q2) are calculable in LQCD

Determined by matrix elements of local gluonic operators  

Extraction of A2

We calculate on the lattice:
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factors of m and p

Gluonic Transversity

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor W
µ⌫

, ! even n
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where Double Helicity Flip Gluon Structure Function: �(x,Q2)

Dispersion relation for helicity flip part of T
µ⌫

(previous slide) and analytic
continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor W
µ⌫

, ! even n
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Symmetrise in                   , trace subtract in all free indices

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor W
µ⌫

, ! even n
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where
Symmetrise in                   , trace subtract in all free indices



LQCD Calculation
UNRENORMALISED reduced matrix element: � meson
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Different Irreps.

Different basis vectors

Boost of � (not mtm transfer)

Simplest spin-1 system: ϕ meson (unphysically heavy)

W. Detmold, PES, PRD 94 (2016), 014507



Spin-independent gluon operator: 
 

Matrix elements at n=2 define lowest  
moment of structure functions

Analysis as in transversity case
Mixing with quark ops. neglected, pQCD calcs. 
shown that it is small: Alexandrou 1611.06901 

Two reduced matrix elements

Spin-indep. gluon structure
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Erratum: Gluonic Transversity from Lattice QCD [Phys. Rev. D 94, 014507 (2016)]

W. Detmold and P. E. Shanahan
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

On further investigation, it was discovered that the
decomposition of the PDFs of the spin-independent gluon
operator in Eq. (37) of the main paper is incorrect. This
lead to a number of errors, which are corrected here.

Replacing Eq. (32) of the main paper, the gluonic ana-
logue of the So↵er bound, for spin-1 particles, is [1–4]

|�G(x)|  1

2

✓
f1(x) +

1

2
f1LL(x) + g1(x)

◆
, (1)

where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) of the main paper, f1(x) and f1LL(x)
are the spin-independent gluon distributions, and g1(x)
is the spin-dependent gluon distribution. The notation
here for f1, f1LL and g1 is the same as in Refs. [3, 4],
while �G(x) is named h1TT in those works.

Replacing Eq. (36) of the main paper, the analogue of
the So↵er bound for the leading Mellin moments of gluon

distributions is [4]

|A2|  1

24
(5B2,1 � 6B2,2), (2)

where A2 is the reduced matrix element defined in
Eq. (10) of the main paper and B2,1 and B2,2 are linear
combinations of the moments of the structure functions
f1 and f1LL in Eq. (1), defined through

hpE0|Oµ1µ2 |pEi
=S

⇥
M

2
E

0⇤
µ1
Eµ2

⇤
B2,1(µ

2)

+ S [(E · E0⇤)pµ1pµ2 ]B2,2(µ
2). (3)

This equation replaces Eq. (37) from the main paper.
Several figures must also be replaced. Figures 1 and 2

below replace Figs. 6 and 8 from the main paper. The
conclusions of the analysis, including that the gluon sof-
fer bound in the spin-1 � meson is saturated to approxi-
mately 80%–100%, do not change.

[1] X. Artru, M. Elchikh, J.-M. Richard, J. So↵er, and O. V.
Teryaev, Phys. Rept. 470, 1 (2009), 0802.0164.

[2] R. Ja↵e, private communication.
[3] D. Boer, S. Cotogno, T. van Daal, P. J. Mulders, A. Sig-

nori, and Y.-J. Zhou, JHEP 10, 013 (2016), 1607.01654.
[4] S. Cotogno, Few Body Syst. 58, 92 (2017).
[5] M. Lüscher, JHEP 08, 071 (2010), [Erratum:

JHEP03,092(2014)], 1006.4518.
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[5] M. Lüscher, JHEP 08, 071 (2010), [Erratum:

JHEP03,092(2014)], 1006.4518.

7

FIG. 4. Example of the evolution of the ⌧ -plateaus for A2

with sink time t for the vector O(E)
2,1 at |~p|2 = 3. The hori-

zontal bands show the final fit value obtained from the two
dimensional (t, ⌧) fit, as described in the text.

reduced matrix elements of local operators:

Oµ⌫µ1...µn =S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (33)

Oµ1...µn =S
h
Gµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (34)

eOµ1...µn =S
h
eGµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (35)

for the transversity, spin-independent and spin-
dependent distributions respectively, where the dual
field strength tensor is eGµ⌫ = ✏µ⌫⇢�G⇢�. The first
moments of the gluonic distributions are related to the
matrix elements of the n = 2 operators in the towers
above. Since the � matrix element of eOµ1µ2 vanishes by
parity, the analogue of the So↵er bound for the leading
Mellin moments of gluon distributions is [26]

|A2|
B2
 1

2
, (36)

where A2 is the reduced matrix element defined in

FIG. 5. Reduced matrix element A2 extracted from ratios of
two and three-point functions for di↵erent boost momenta, as
described in Section III C. Wilson flow [22] was applied to the
links in the gluon operator as described in the text. Results in
sections I, II and III of the figure are determined from vectors
in the ⌧

(2)
1 , ⌧

(6)
1 and ⌧

(2)
2 representations. Di↵erent colours

(o↵set on the horizontal access for clarity) denote di↵erent
vectors in each basis. The horizontal band is a fit shown to
guide the eye.

Eq. (10) and we define B2 through

hpE0|Oµ1µ2 |pEi
= S

h
(�E · E0⇤)pµ1pµ2 + (p · E)E0

⇤µ1
pµ2

+(p · E0⇤)Eµ1pµ2 � (p · p)E0
⇤µ1

Eµ2

⇤
B2(µ

2).
(37)

The building block of the Euclidean analogue of
Eq. (34) for n = 2 is

Oµ1µ2 = G(E)
µ1↵G

(E)
µ2↵. (38)

It is clear from Table II that this operator is subject to
mixing with same-dimension quark operators at O(↵s).
In this proof-of-principle study we neglect operator mix-
ing and renormalisation and simply determine the bare
lattice matrix element B2, as described in previous sec-
tions for A2, from the matrix elements of Euclidean-space
basis vectors in appropriate irreducible representations of
H(4). Explicit forms for the particular vectors we con-
sider are given in Appendix A.

V. RESULTS

The reduced matrix element A2 obtained from this
analysis, with Wilson flow [22] applied to the links in
the gluon operator to a total flow time of 1 in lattice
units using a step size of 0.01, is shown in Fig. 5 for
various boosts and for all operator basis vectors that
have non-vanishing contributions at that boost. Out-
standing agreement is seen between the values obtained



Or is the picture more complicated?

Gluon Radii

Bag Model

gluon radius > charge radius

Constituent 
Quark Model

LQCD with  
heavy quarks

gluon radius ~ charge radius
gluon radius < charge radius

How does the gluon radius of a proton compare to the 
quark/charge radius?



Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated: 
 
 

Gluon Generalised FFs

2

lated to matrix elements of the operators

Oµ⌫µ1...µn = S
h

Gµ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

, (1)

Õµ⌫µ1...µn = S
h

G̃µ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

, (2)

Oµ⌫µ1...µn = S
h

Gµµ1i
 !
D µ3 . . . i

 !
D µnG⌫µ2

i

, (3)

respectively, where the gluon field strength tensor is Gµ⌫ ,
the dual field-strength tensor is G̃µ⌫ = 1

2

✏µ⌫↵�G
↵� , and

 !
D = 1

2

⇣�!
D � �D

⌘

. ‘S’ denotes symmetrisation and trace-

subtraction in all free indices for Eqs. (1) and (2), and
symmetrisation in the µi and and trace-subtraction in
all indices for Eq. (3). The matrix elements of these
operators in spin-1 states, at lowest n, are the focus of
this work.

The o↵-forward matrix elements of the twist-2 oper-
ators defined above are described by GFFs. For spin-1
particles, there are 7(bn/2c+ 1) spin-independent gluon

GFFs for the nth operator in the tower. For the transver-
sity operator, there are 8(b(n � 2)/2c + 1) gluon GFFs.
The spin-dependent gluon GFFs, which vanish at lowest-
n through operator symmetries, are not considered nu-
merically in this work but are enumerated in Appendix B.
With the polarisation vectors of massive spin-1 particles
defined in Minkowski space as

Eµ(~p,�) =

✓

~p · ~e�
m

,~e� +
~p · ~e�

m(m+ E)~p
◆

, (4)

where � = {+,�, 0}, m and E =
p|~p|2 +m2 are the rest

mass and energy of the state, and

~e± = ⌥ 1p
2
(0, 1,±i), (5)

~e
0

= (1, 0, 0), (6)

the spin-independent gluon GFFs are defined1 [6] through

D

p0E0
�

�

�

S
h

Gµ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

�

�

�

pE
E

=
n
X

m even

m=0

(

B
(n+2)

1,m (�2)M2S
⇥

EµE
0⇤
⌫ �µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

2,m (�2)S
⇥

(E · E0⇤)PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

3,m (�2)S
⇥

(E · E0⇤)�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

4,m (�2)S
⇥�

(E0⇤ · P )EµP⌫ + (E · P )E0⇤
µ P⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

5,m (�2)S
⇥�

(E0⇤ · P )Eµ�⌫ � (E · P )E0⇤
µ �⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)

6,m (�2)

M2

S
⇥

(E · P )(E0⇤ · P )PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)

7,m (�2)

M2

S
⇥

(E · P )(E0⇤ · P )�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

)

. (7)

Here, P = (p + p0)/2 is the average momentum and the momentum transfer is defined as � = p0 � p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1
This choice of basis is slightly di↵erent from that in Ref. [6],

where the decomposition also includes a trace term.



Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated: 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all indices for Eq. (3). The matrix elements of these
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this work.
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particles, there are 7(bn/2c+ 1) spin-independent gluon

GFFs for the nth operator in the tower. For the transver-
sity operator, there are 8(b(n � 2)/2c + 1) gluon GFFs.
The spin-dependent gluon GFFs, which vanish at lowest-
n through operator symmetries, are not considered nu-
merically in this work but are enumerated in Appendix B.
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the spin-independent gluon GFFs are defined1 [6] through
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Here, P = (p + p0)/2 is the average momentum and the momentum transfer is defined as � = p0 � p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1
This choice of basis is slightly di↵erent from that in Ref. [6],

where the decomposition also includes a trace term.

Many gluonic radii:
Defined by slope of each 

form factor at Q2=t=0



One GFF can be resolved for all momenta 
 
 
 
 
 
 
 
 

Gluon Transversity GFFs
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W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515



Three GFFs can be resolved for all momenta 
 
 
 
 
 
 
 
 
 
 
 
 

Spin-Indep. Gluon GFFs
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Quark and Gluon GFFs
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Ratio of gluon to quark unpolarised GFFs 
 
 
 
 
 
 
 
 
 
 
 
Gluon vs quark radius is a non-trivial question  
Much more complicated than intuitive pictures



First investigations:  
ϕ meson  
simplest spin-1 system (has fwd 
limit gluon transversity) 
 

 

Phenomenologically relevant:  
nucleon, N*, excited mesons, 
nuclei

‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

Gluon structure of nucleons and nuclei



Precise understanding of nuclear 
targets essential for DUNE expt: 
extraction of neutrino mass 
hierarchy, mixing parameters

Here −Q2 represents the squared four-momentum of the virtual photon that mediates the in-
teraction with coupling strength α and x = Q2/2Mν can be interpreted as the fraction of the
longitudinal nucleon momentum carried by the struck quark, in a frame where the nucleon moves
with infinite momentum in the direction opposite to that of the virtual photon. The variable y
denotes, in the target rest frame , the virtual-photon energy ν with respect to the lepton-beam
energy E.

At leading order in QCD the structure function F2 is defined as the sum of the momentum
distributions q(x,Q2) and q̄(x,Q2) of quarks and anti-quarks of flavor q = u, d, s, ... weighted by
x and z2q, where zq is the quark charge (in units of the elementary charge |e|):

F2(x,Q
2) =

∑

q=u,d,s..

xz2q
[

q(x,Q2) + q̄(x,Q2)
]

. (2)

The quantity

R =
σL

σT
=

F2

2xF1

[

1 +
4M2x2

Q2

]

− 1 =
FL

2xF1
(3)

is the ratio of the longitudinal to transverse virtual-photon cross sections. In the quark-parton
model, R = 0 for the interaction of the virtual photon with a point-like spin-1/2 particle. Quark
transverse momenta, quark masses and gluon radiation cause R to deviate from zero. If R is
independent of the nuclear mass number A (see the discussion in section 4.4), then the ratio of
cross sections for two different nuclei is equal to the ratio of their structure functions F2.

Subsequently, we will always discuss the ratio of structure functions (cross sections) per
nucleon for a nucleus with mass number A (i.e., A nucleons) and the deuteron D. The latter is, to
a good approximation, equal to the proton-neutron averaged structure function FD

2 ≈ (Fp
2+Fn

2)/2.
The x dependence of the structure functions Fp

2 and Fn
2 is different (for free nucleons they are

approximately related by Fn
2/F

p
2 ≈ 1−0.8x). Results for the nuclear structure function FA

2 (cross
section σA) for nuclei with Z protons and N neutrons will always be corrected for neutron excess
by

FA
2 = (

Fp
2 + Fn

2

2
)A ·

[

1−
N− Z

N+ Z
·
1− Fn

2/F
p
2

1 + Fn
2/F

p
2

]

, (4)

where it is assumed that proton and neutron structure functions are modified equally by the
nuclear environment. Thus, FA

2 is the structure function per nucleon for a hypothetical isoscalar
nucleus with an equal number (A2 ) of protons and neutrons.

3 The discovery

The historical result of the EMC effect [1] (updated results were published in [11]) is presented
in the left panel of Fig. 1. It shows the ratio of the structure function F2 per nucleon for iron
and deuterium, both uncorrected for Fermi motion, as a function of x. The shaded area indicates
the range for the errors on the slope of a linear fit to the data, the point-to-point systematic
uncertainties are somewhat larger. In addition there is an overall uncertainty of ±7%.

The ratio is seen to be different from unity. It falls from ∼ 1.15 at x = 0.05 to a value of
∼ 0.89 at x = 0.65 and doesn’t follow the expectations from Fermi-motion calculations. This

2

Ratio of structure function F2 per 
nucleon for iron and deuterium European Muon 

Collaboration (1983):

Modification of per-nucleon 
cross section of nucleons  
bound in nuclei

Gluon structure - nuclei

What is the gluonic analogue of the EMC effect?
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PRELIMINARY

Gluon momentum fraction

Bands:  
proton result

Spin-independent structure function in nucleon and light nuclei
Present statistics: can’t distinguish from no-EMC effect scenario
Small additional uncertainty from mixing with quark operators

NPLQCD Collaboration, in preparation

m𝞹 ~450 MeV m𝞹 ~800 MeV



Gluon structure circa 2025
Electron-Ion collider will dramatically alter our knowledge of the gluonic 
structure of hadrons and nuclei

Work towards a complete 3D picture of parton structure (moments, 
x-dependence of PDFs, GPDs, TMDs)

Δ(x,Q2) has an interesting role
Purely gluonic
Non-nucleonic: directly probe nuclear effects

Compare quark and gluon distributions in hadrons and nuclei

Potentially revel new information about the nature of gluon 
excitations and the N* spectrum 

Lattice QCD calculations in hadrons and light nuclei will complement 
and extend understanding of fundamental structure of nature


