Gluon Structure of Hadrons and Nuclei

Phiala Shanahan
The College of William and Mary
Jefferson Lab Thomas Jefferson National Accelerator Facility

Gluon Structure

- Past 60+ years: detailed view of quark structure of nucleons
- Gluonic structure (beyond gluon density) relatively unexplored

Gluon Structure of N^{*} spectrum

- Better understand and classify N* resonances
- Identify gluonic excitations
- Electron-Ion Collider
- Priority in 2015 nuclear physics long range plan
- "Understanding the glue that binds us all"
- Insights from Lattice QCD?

Cover image from EIC whitepaper arXiv:: 1212.1701

Gluonic Structure

Studying gluonic structure of hadrons/nuclei is hard

- Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
- Other processes less clean: heavy flavour production
- Quarks and gluons mix via evolution
- Uniquely quarky: nonsinglet quantities
- Uniquely gluonic: double helicity flip/ gluonic transversity

Gluonic Transversity

Leading twist gluon parton distribution $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$: double helicity flip [Jaffe \& Manohar 1989]

- Unambiguously gluonic: no analogous quark PDF at twist-2
- Non-vanishing in forward limit for targets with spin ≥ 1
- Experimentally measurable in unpolarised electron DIS on polarised target
- Nitrogen target: JLab Lol 2015
- Polarised nuclei at EIC
- Moments calculable in LQCD

Gluonic Transversity

Double helicity flip structure function $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

Changes both photon and target helicity by 2 units

Gluonic Transversity

Double helicity flip structure function $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

- Hadrons: Gluonic Transversity (parton model interpretation)

$$
\Delta\left(x, Q^{2}\right)=-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \operatorname{Tr}^{2} x^{2} \int_{x}^{1} \frac{d y}{y^{3}}\left[g_{\hat{x}}\left(y, Q^{2}\right)-g_{\hat{y}}\left(x, Q^{2}\right)\right]
$$

$g_{\hat{x}, \hat{g}}\left(y, Q^{2}\right)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x}, \hat{y} direction

- Nuclei: Exotic Glue gluons not associated with individual nucleons

$$
\langle p| \mathcal{O}|p\rangle=0
$$ in nucleus

Gluonic Transversity

Double helicity flip structure function $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

- Hadrons: Gluonic Transversity (parton model interpretation)

$$
\Delta\left(x, Q^{2}\right)=-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \operatorname{Tr}^{2} x^{2} \int_{x}^{1} \frac{d y}{y^{3}}\left[g_{\hat{x}}\left(y, Q^{2}\right)-g_{\hat{y}}\left(x, Q^{2}\right)\right]
$$

$g_{\hat{x}, \hat{y},\left(y, Q^{2}\right)}$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x}, \hat{y} direction

- Nuclei: Exotic Glue gluons not associated with individual nucleons

$$
\langle p| \mathcal{O}|p\rangle=0
$$ in nucleus

Gluonic Transversity

Moments of $\Delta\left(x, Q^{2}\right)$ are calculable in LQCD

Moment of Structure Function

Reduced Matrix Element

$$
\int_{0}^{1} d x x^{n-1} \Delta\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{3 \pi} \frac{A_{n}\left(Q^{2}\right)}{n+2}, \quad n=2,4,6 \ldots
$$

Determined by matrix elements of local gluonic operators

$$
\begin{array}{r}
\left\langle p E^{\prime}\right| \underline{S}\left[G_{\mu \mu_{1}} \overleftrightarrow{D}_{\mu_{3}} \ldots \overleftrightarrow{D}_{\mu_{n}} G_{\nu \mu_{2}}\right]|p E\rangle \text { Symmetrise in } \mu_{1}, \ldots, \mu_{n}, \text { trace subtract in all free indices } \\
=(-2 i)^{n-2} \underline{S}\left[\left(p_{\mu} E_{\mu_{1}}^{* *}-p_{\mu_{1}} E_{\mu}^{\prime *}\right)\left(p_{\nu} E_{\mu_{2}}-p_{\mu_{2}} E_{\nu}\right)\right. \\
+(\mu \leftrightarrow \nu)] p_{\mu_{3}} \ldots p_{\mu_{n}} A_{n}\left(Q^{2}\right) \ldots, \\
\text { Reduced Matrix Element }
\end{array}
$$

LQCD Calculation

Simplest spin-I system: ϕ meson (unphysically heavy)

W. Detmold, PES, PRD 94 (20।6), 014507

Spin-indep. gluon structure

W. Detmold, PES, PRD 94 (20I6), 0 I 4507

Spin-independent gluon operator:

$$
\overline{\mathcal{O}}_{\mu_{1} \ldots \mu_{n}}=S\left[G_{\mu_{1} \alpha} \overleftrightarrow{D}_{\mu_{3}} \ldots \overleftrightarrow{D}_{\mu_{n}} G_{\mu_{2}}^{\alpha}\right]
$$

Matrix elements at $\mathrm{n}=2$ define lowest moment of structure functions

$$
\begin{aligned}
& \left\langle p E^{\prime}\right| \overline{\mathcal{O}}_{\mu_{1} \mu_{2}}|p E\rangle \\
& =S\left[M^{2} E_{\mu_{1}}^{\prime *} E_{\mu_{2}}\right] B_{2,1}\left(\mu^{2}\right) \\
& \quad+S\left[\left(E \cdot E^{\prime *}\right) p_{\mu_{1}} p_{\mu_{2}}\right] B_{2,2}\left(\mu^{2}\right)
\end{aligned}
$$

Two reduced matrix elements

- Analysis as in transversity case
- Mixing with quark ops. neglected, pQCD calcs.

 shown that it is small: Alexandrou 1611.0690 I

Gluon Radii

How does the gluon radius of a proton compare to the quark/charge radius?

Or is the picture more complicated?

Gluon Generalised FFs

Matrix elements of the spin-independent gluon structure function

- Off-forward matrix elements are complicated:

$$
\begin{aligned}
\left\langle p^{\prime} E^{\prime}\right| S\left[G_{\mu \alpha} i \overleftrightarrow{D}_{\mu_{1}} \ldots\right. & \left.. i \overleftrightarrow{D}_{\mu_{n}} G_{\nu}^{\alpha}\right]|p E\rangle \\
=\sum_{\substack{m \text { even } \\
m=0}}^{n}\{ & B_{1, m}^{(n+2)}\left(\Delta^{2}\right) M^{2} S\left[E_{\mu} E_{\nu}^{\prime *} \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right] \\
& +B_{2, m}^{(n+2)}\left(\Delta^{2}\right) S\left[\left(E \cdot E^{\prime *}\right) P_{\mu} P_{\nu} \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right] \\
& +B_{3, m}^{(n+2)}\left(\Delta^{2}\right) S\left[\left(E \cdot E^{\prime *}\right) \Delta_{\mu} \Delta_{\nu} \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right] \\
& +B_{4, m}^{(n+2)}\left(\Delta^{2}\right) S\left[\left(\left(E^{\prime *} \cdot P\right) E_{\mu} P_{\nu}+(E \cdot P) E_{\mu}^{\prime *} P_{\nu}\right) \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right] \\
& +B_{5, m}^{(n+2)}\left(\Delta^{2}\right) S\left[\left(\left(E^{\prime *} \cdot P\right) E_{\mu} \Delta_{\nu}-(E \cdot P) E_{\mu}^{\prime *} \Delta_{\nu}\right) \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right] \\
& +\frac{B_{6, m}^{(n+2)}\left(\Delta^{2}\right)}{M^{2}} S\left[(E \cdot P)\left(E^{\prime *} \cdot P\right) P_{\mu} P_{\nu} \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right] \\
& \left.+\frac{B_{7, m}^{(n+2)}\left(\Delta^{2}\right)}{M^{2}} S\left[(E \cdot P)\left(E^{\prime *} \cdot P\right) \Delta_{\mu} \Delta_{\nu} \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right]\right\}
\end{aligned}
$$

Gluon Generalised FFs

Matrix elements of the spin-independent gluon structure function

- Off-forward matrix elements are complicated:

$$
\begin{aligned}
& \left\langle p^{\prime} E^{\prime}\right| S\left[G_{\mu \alpha} i \overleftrightarrow{D}_{\mu_{1} \ldots} \ldots \overleftrightarrow{D}_{\mu_{n}} G_{\nu}^{\alpha}\right]|p E\rangle \\
& =\sum_{\substack{m \text { even } \\
m=0}}^{n}\left\{B_{1, m}^{(n+2)}\left(\Delta^{2}\right) M^{2} S\left[E_{\mu} E_{\nu}^{*} \Delta_{\mu_{1}} \ldots \Delta_{\mu_{m}} P_{\mu_{m+1}} \ldots P_{\mu_{n}}\right]\right.
\end{aligned}
$$

Gluon Transversity GFFs

W. Detmold, PES, PRD 94 (20|6), 0 I 4507 + W. Detmold, D. Pefkou, PES PRD 95 (20|7), II45 I5

One GFF can be resolved for all momenta

Spin-Indep. Gluon GFFs

W. Detmold, PES, PRD 94 (20I6), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (20I7), II45I5

Three GFFs can be resolved for all momenta

Quark and Gluon GFFs

Ratio of gluon to quark unpolarised GFFs

Gluon vs quark radius is a non-trivial question Much more complicated than intuitive pictures

Gluon structure of nucleons and nuclei

First investigations:
ϕ meson
simplest spin- I system (has fwd limit gluon transversity)

Phenomenologically relevant: nucleon, N^{*}, excited mesons, nuclei

Gluon structure - nuclei

European Muon Collaboration (1983):

Modification of per-nucleon cross section of nucleons bound in nuclei

Precise understanding of nuclear targets essential for DUNE expt: extraction of neutrino mass hierarchy, mixing parameters

Ratio of structure function F_{2} per nucleon for iron and deuterium

$$
\mathrm{F}_{2}\left(x, Q^{2}\right)=\sum_{\mathrm{q}=\mathrm{u}, \mathrm{~d}, \mathrm{s.}} x z_{\mathrm{q}}^{2}\left[\mathrm{q}\left(x, Q^{2}\right)+\overline{\mathrm{q}}\left(x, Q^{2}\right)\right]
$$

What is the gluonic analogue of the EMC effect?

Gluon momentum fraction

NPLQCD Collaboration, in preparation

- Spin-independent structure function in nucleon and light nuclei
- Present statistics: can't distinguish from no-EMC effect scenario
- Small additional uncertainty from mixing with quark operators

Gluon structure circa 2025

- Electron-lon collider will dramatically alter our knowledge of the gluonic structure of hadrons and nuclei
- Work towards a complete 3D picture of parton structure (moments, x-dependence of PDFs, GPDs,TMDs)
- $\Delta\left(x, Q^{2}\right)$ has an interesting role

Purely gluonic
Non-nucleonic: directly probe nuclear effects

- Compare quark and gluon distributions in hadrons and nuclei
- Potentially revel new information about the nature of gluon excitations and the N^{*} spectrum
- Lattice QCD calculations in hadrons and light nuclei will complement and extend understanding of fundamental structure of nature

