Gluon Structure of Hadrons and Nuclei

Phiala Shanahan

The College of William and Mary Thomas Jefferson National Accelerator Facility

Gluon Structure

- Past 60+ years: detailed view of quark structure of nucleons
- Gluonic structure (beyond gluon density) relatively unexplored
- Gluon Structure of N* spectrum
 - Better understand and classify N* resonances
 - Identify gluonic excitations
- Electron-Ion Collider
 - Priority in 2015 nuclear physics long range plan
 - "Understanding the glue that binds us all"
- Insights from Lattice QCD?

Cover image from EIC whitepaper arXiv::1212.1701

Gluonic Structure

Studying gluonic structure of hadrons/nuclei is hard

- Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
- Other processes less clean: heavy flavour production
- Quarks and gluons mix via evolution
 - Uniquely quarky: nonsinglet quantities
 - Uniquely gluonic: double helicity flip/ gluonic transversity

Leading twist gluon parton distribution Δ(x,Q²): double helicity flip [Jaffe & Manohar 1989]

- Unambiguously gluonic: no analogous quark PDF at twist-2
- Non-vanishing in forward limit for targets with spin \geq I
- Experimentally measurable in unpolarised electron DIS on polarised target
 - Nitrogen target: JLab Lol 2015
 - Polarised nuclei at EIC
- Moments calculable in LQCD

Double helicity flip structure function $\Delta(x,Q^2)$

Changes both photon and target helicity by 2 units $\Delta(x, Q^2) = A$ = A = A

Double helicity flip structure function $\Delta(x,Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(x,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x} , \hat{y} direction

Nuclei: Exotic Glue

gluons not associated with individual nucleons in nucleus $\langle p|\mathcal{O}|p\rangle = 0$ $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Double helicity flip structure function $\Delta(x,Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(x,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x} , \hat{y} direction

Nuclei: Exotic Glue

gluons not associated with individual nucleons in nucleus $\langle p|\mathcal{O}|p\rangle = 0$ $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Moments of $\Delta(x,Q^2)$ are calculable in LQCD

Determined by matrix elements of local gluonic operators

$$\begin{split} \langle pE' | \underline{S} \left[G_{\mu\mu_1} \overleftarrow{D}_{\mu_3} \dots \overleftarrow{D}_{\mu_n} G_{\nu\mu_2} \right] | pE \rangle \\ &= (-2i)^{n-2} \underline{S} \left[(p_{\mu} E'^*_{\mu_1} - p_{\mu_1} E'^*_{\mu}) (p_{\nu} E_{\mu_2} - p_{\mu_2} E_{\nu}) \right. \\ &+ (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \end{split}$$

Reduced Matrix Element

LQCD Calculation

Simplest spin-I system: ϕ meson (unphysically heavy)

W. Detmold, PES, PRD 94 (2016), 014507

Spin-indep. gluon structure

W. Detmold, PES, PRD 94 (2016), 014507

Spin-independent gluon operator:

$$\overline{\mathcal{O}}_{\mu_1\dots\mu_n} = S\left[G_{\mu_1\alpha}\overleftrightarrow{D}_{\mu_3}\dots\overleftrightarrow{D}_{\mu_n}G_{\mu_2}^{\alpha}\right]$$

Matrix elements at n=2 define lowest moment of structure functions

$$\langle pE' | \overline{\mathcal{O}}_{\mu_1 \mu_2} | pE \rangle = S \left[M^2 E_{\mu_1}'^* E_{\mu_2} \right] B_{2,1}(\mu^2) + S \left[(E \cdot E'^*) p_{\mu_1} p_{\mu_2} \right] B_{2,2}(\mu^2)$$

Two reduced matrix elements

- Analysis as in transversity case
- Mixing with quark ops. neglected, pQCD calcs. shown that it is small: Alexandrou 1611.06901

Gluon Radii

How does the gluon radius of a proton compare to the quark/charge radius?

Or is the picture more complicated?

Gluon Generalised FFs

Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated:

Gluon Generalised FFs

Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated:

$$\left\langle p'E' \left| S \left[G_{\mu\alpha} i \overleftarrow{D}_{\mu_{1}} \dots i \overleftarrow{D}_{\mu_{n}} G_{\nu}^{\alpha} \right] \right| pE \right\rangle$$

$$= \sum_{\substack{m \text{ even} \\ m=0}}^{n} \left\{ \begin{array}{c} B_{1,m}^{(n+2)}(\Delta^{2}) M^{2}S \left[E_{\mu}E_{\nu}^{\prime*}\Delta_{\mu_{1}} \dots \Delta_{\mu_{m}}P_{\mu_{m+1}} \dots P_{\mu_{n}} \right] \right. \\ \left. + B_{2,m}^{(n+2)}(\Delta^{2}) S \left[(E \cdot E^{(*)} + E^{(*$$

Gluon Transversity GFFs

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515

One GFF can be resolved for all momenta

Spin-Indep. Gluon GFFs

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515

Three GFFs can be resolved for all momenta

Quark and Gluon GFFs

Ratio of gluon to quark unpolarised GFFs

Gluon vs quark radius is a non-trivial question Much more complicated than intuitive pictures

Gluon structure of nucleons and nuclei

First investigations:

φ meson simplest spin-1 system (has fwd limit gluon transversity)

Phenomenologically relevant: nucleon, N*, excited mesons, nuclei

Gluon structure - nuclei

European Muon Collaboration (1983):

Modification of per-nucleon cross section of nucleons bound in nuclei

Precise understanding of nuclear targets essential for DUNE expt: extraction of neutrino mass hierarchy, mixing parameters Ratio of structure function F_2 per nucleon for iron and deuterium

$$F_2(x,Q^2) = \sum_{q=u,d,s..} x z_q^2 \left[q(x,Q^2) + \bar{q}(x,Q^2) \right]$$

What is the gluonic analogue of the EMC effect?

Gluon momentum fraction

NPLQCD Collaboration, in preparation

- Spin-independent structure function in nucleon and light nuclei
- Present statistics: can't distinguish from no-EMC effect scenario
- Small additional uncertainty from mixing with quark operators

Gluon structure circa 2025

- Electron-Ion collider will dramatically alter our knowledge of the gluonic structure of hadrons and nuclei
 - Work towards a complete 3D picture of parton structure (moments, x-dependence of PDFs, GPDs, TMDs)
 - Δ(x,Q²) has an interesting role
 Purely gluonic
 Non-nucleonic: directly probe nuclear effects

- Compare quark and gluon distributions in hadrons and nuclei
- Potentially revel new information about the nature of gluon excitations and the N* spectrum
- Lattice QCD calculations in hadrons and light nuclei will complement and extend understanding of fundamental structure of nature