Studying the $P_{c}(4450)$ resonance in J / ψ photoproduction off protons

Astrid N. Hiller Blin
Johannes Gutenberg-Universität Mainz hillerbl@uni-mainz.de

Tuesday $22^{\text {nd }}$ August, 2017

> PRD 94 (2016) 034002 1606.08912 [hep-ph]

Pentaquark-like structure

Discovery in 2015 of exotic resonances in $J / \psi p$ channel:

LHCb collaboration, PRL 115 (2015) 072001
Narrow 39 MeV , at 4.45 GeV
Broad 205 MeV , at 4.38 GeV

Pentaquark-like structure

Discovery in 2015 of exotic resonances in $J / \psi p$ channel:

LHCb collaboration, PRL 115 (2015) 072001
Narrow 39 MeV , at 4.45 GeV
Broad 205 MeV , at 4.38 GeV

- Favored spin-parity assignment for $P_{c}(4450): 3 / 2^{-}$or $5 / 2^{+}$
- Excellent candidate for J / ψ photoproduction off protons

Wang et al., PRD 92 (2015), 034022; Karliner and Rosner, PLB 752 (2016), 329

- Probing this approved for JLab Hall C with A rating

Meziani et al., arXiv:1609.00676

Advantages of study in J / ψ photoproduction

- The structure appears close to threshold: low background

Advantages of study in J / ψ photoproduction

- The structure appears close to threshold: low background
- Sneak preview:

- Photoproduction constrains the nature of the structure

Nature of the structures

- Triangle singularities (rescattering effects): not a resonance

Mikhasenko, arXiv:1507.06552
Liu et al., PLB 757 (2016) 231
Guo et al., EPJA 52 (2016) 318
Guo et al., PRD 92 (2015) 071502

- Quark degrees of freedom

Anisovich et al., arXiv:1507.07652
Lebed, PLB 749 (2015) 454
Maiani et al., PLB 749 (2015) 289

- Meson-baryon molecules or bound states

He, PLB 753 (2016) 547
Eides et al., PRD 93 (2016) 054039
Meißner and Oller, PLB 751 (2015) 59
Roca et al., PRD 92 (2015) 094003
Chen et al., PRL 115 (2015) 172001
$P_{c}(4450)$ in J / ψ photoproduction would exclude scenarios of kinematical effects!

Reaction model

Reaction model

$$
\left.\frac{d \sigma}{d \cos \theta} \sim \sum_{\lambda_{\gamma}, \lambda_{p}, \lambda_{\psi}, \lambda_{p^{\prime}}}\left|\left\langle\lambda_{\psi} \lambda_{p^{\prime}}\right| T_{r}\right| \lambda_{\gamma} \lambda_{p}\right\rangle\left.\right|^{2}
$$

- Resonant amplitude - Breit-Wigner ansatz
- Non-resonant contribution - Pomeron exchange

Breit-Wigner s-channel contribution: hadronic couplings

$$
\left\langle\lambda_{\psi} \lambda_{p^{\prime}}\right| T_{r}\left|\lambda_{\gamma} \lambda_{p}\right\rangle=\frac{\left\langle\lambda_{r}\right| T_{\mathrm{em}}^{\dagger}\left|\lambda_{\gamma} \lambda_{p}\right\rangle\left\langle\lambda_{\psi} \lambda_{p^{\prime}}\right| T_{\mathrm{dec}}\left|\lambda_{r}\right\rangle}{M_{r}^{2}-W^{2}-\mathrm{i} \Gamma_{r} M_{r}}
$$

- Three independent (parity) helicity amplitudes $\sim g_{\lambda_{p^{\prime}}, \lambda_{\psi}}$:
- $\lambda_{\psi}= \pm 1,0, \lambda_{p}= \pm \frac{1}{2} \longrightarrow$ in total 6 helicity amplitudes
- Assumption: $g_{\lambda_{\rho^{\prime}}, \lambda_{\psi}}=g$
- g extracted from hadronic decay width

$$
\Gamma_{\psi \boldsymbol{p}}=\mathcal{B}_{\psi \boldsymbol{p}} \Gamma_{r}=\mathcal{B}_{\psi \boldsymbol{p}} 39 \mathrm{MeV}
$$

Breit-Wigner s-channel contribution: photocouplings

$$
\left\langle\lambda_{\psi} \lambda_{p^{\prime}}\right| T_{r}\left|\lambda_{\gamma} \lambda_{p}\right\rangle=\frac{\left\langle\lambda_{r}\right| T_{\mathrm{em}}^{\dagger}\left|\lambda_{\gamma} \lambda_{p}\right\rangle\left\langle\lambda_{\psi} \lambda_{p^{\prime}}\right| T_{\mathrm{dec}}\left|\lambda_{r}\right\rangle}{M_{r}^{2}-W^{2}-\mathrm{i} \Gamma_{r} M_{r}}
$$

- Photocouplings $A_{1 / 2}, A_{3 / 2}$ estimated with VMD:

Karliner and Rosner, PLB 752 (2016) 329

- J/ ψ exchange dominates radiative decays
- Electromagnetic width Γ_{γ} related to hadronic width:

$$
\Gamma_{\gamma}=\Gamma_{\psi p}\left(\frac{e f_{\psi}}{M_{\psi}}\right)^{2}\left(\frac{p_{i}}{p_{f}}\right)^{2 \ell+1} \times \frac{4}{6} \Longrightarrow A_{1 / 2}, A_{3 / 2} \text { fixed by } \mathcal{B}_{\psi p}
$$

Pomeron t-channel exchange

- Background described by Pomeron exchange

$$
\mathrm{i} A\left(\frac{s-s_{t}}{\mathrm{GeV}^{2}}\right)^{\alpha_{0}+\alpha^{\prime} t} e^{b_{0}\left(t-t_{\min }\right)} \delta_{\lambda_{p} \lambda_{\rho^{\prime}}} \delta_{\lambda_{\psi} \lambda_{\gamma}}
$$

- $A, b_{0}, s_{t}, \alpha_{0}, \alpha^{\prime}$ fitted to world J / ψ photoproduction data from threshold up to 300 GeV
- Simultaneous fit with branching ratio $\mathcal{B}_{\psi p}$

Background fit to high-energy data...

Chekanov et al. [ZEUS], EPJC 24 (2002) 345

Aktas et al. [H1],
EPJC 46 (2006) 585
... simultaneously to low-energy data

Spin-3/2 vs. spin-5/2

Camerini et al., PRL 35 (1975) 483
Two points closest to threshold: unpublished SLAC data (only forward direction!) Ritson, AIPCP 30 (1976) 75; Anderson, SLAC-PUB-1741 (1976) Relevant to constrain pentaquark peak and branching ratio!
First results: no smearing due to experimental resolution

Different smearing scenarios

Branching ratio and photocouplings

- Branching ratio $P_{c}(4450) \rightarrow J / \psi p$ not yet known We gave a first prediction for its upper limit!

$\sigma_{s}(\mathrm{MeV})$	0	60	120
Spin- $3 / 2$ case	$\leq \mathbf{2 9} \%$	$\leq \mathbf{3 0} \%$	$\leq \mathbf{2 3} \%$
Spin- $5 / 2$ case	$\leq \mathbf{1 7} \%$	$\leq \mathbf{1 2} \%$	$\leq \mathbf{8} \%$

- Status: data at peak scarce and only for forward direction
- At JLab the angular distributions at the $P_{c}(4450)$ energy are to be studied
- Excellent opportunity to fix the photocouplings!

Angular dependence of the differential XS

Relax VMD condition on $A_{1 / 2}$ and $A_{3 / 2}$:
Angular behavior and choice of photocouplings strongly related!

Total cross section

Summary

- The narrow resonance might have escaped detection: we estimate the upper limit of the branching ratio
- $P_{c}(4450)$ in J / ψ photoproduction to confirm resonance: JLab Hall C experiment
- Strong correlation angular distributions \leftrightarrow photocouplings: helps fixing them experimentally!
- Code and interactive website (own parameter choices) available at www.indiana.edu/~jpac/

Outlook

- Extension to J / ψ electroproduction (approved: JLab Hall A)
- To obtain SDMs: upgrade CLAS12 to muon detection

Additional material

Comparing with previous work

Karliner and Rosner, PLB 752 (2016) 329
For $\left\{\begin{array}{l}E_{\gamma}=E_{r}=10.1 \mathrm{GeV} \\ \mathcal{B}_{\psi p}=10 \% \\ J=3 / 2 \\ \text { no background }\end{array}\right.$

Integrated cross section in the different best-fit scenarios

Couplings and widths for the spin-3/2 case

J_{r}^{P}	$3 / 2^{-}$		
$\sigma_{s}(\mathrm{MeV})$	0	60	120
$\mathcal{B}_{\psi p}$	$\leq 29 \%$	$\leq 30 \%$	$\leq 23 \%$
$g(\mathrm{GeV})$	≤ 2.1	≤ 2.2	≤ 1.9
$\Gamma_{\gamma}(\mathrm{keV})$	≤ 14.4	≤ 14.9	≤ 11.0
$A_{1 / 2,3 / 2}\left(\mathrm{Ge}^{-1 / 2}\right)$	≤ 0.007	≤ 0.007	≤ 0.006
$\left.\frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{I} \right\rvert\, E_{\gamma}=E_{r}, t=t_{\text {min }}\left(\mathrm{nb} \mathrm{GeV}^{-2}\right)$			
$\sigma_{\text {tot }} E_{E_{\gamma}}=E_{r}(\mathrm{nb})$	≤ 21.8	≤ 7.2	≤ 3.1
	≤ 120	≤ 38	≤ 14

Couplings and widths for the spin-5/2 case

J_{r}^{P}	$5 / 2^{+}$		
$\sigma_{s}(\mathrm{MeV})$	0	60	120
$\mathcal{B}_{\psi p}$	$\leq 17 \%$	$\leq 12 \%$	$\leq 8 \%$
$g(\mathrm{GeV})$	≤ 2.0	≤ 1.5	≤ 1.4
$\Gamma_{\gamma}(\mathrm{keV})$	≤ 56.9	≤ 33.5	≤ 26.8
$A_{1 / 2,3 / 2}\left(\mathrm{Ge}^{-1 / 2}\right)$	≤ 0.017	≤ 0.013	≤ 0.012
$\left.\frac{\mathrm{~d}}{\mathrm{~d} t} \right\rvert\,$	$E_{\gamma}=E_{r}, t=t_{\text {min }}\left(\mathrm{nb} \mathrm{GeV}^{-2}\right)$		
$\sigma_{\text {tot }} E_{E_{\gamma}}=E_{r}(\mathrm{nb})$	≤ 95.8	≤ 11.3	≤ 3.9
	≤ 396	≤ 44	≤ 14

Branching ratio and fit results

Branching ratio $P_{c}(4450) \rightarrow J / \psi p$ not yet known We gave the first prediction for its upper limit!

$\sigma_{s}(\mathrm{MeV})$	0	60	120
A	$0.156_{-0.020}^{+0.029}$	$0.157_{-0.021}^{+0.039}$	$0.157_{-0.022}^{+0.037}$
α_{0}	$1.151_{-0.020}^{+0.018}$	$1.150_{-0.026}^{+0.018}$	$1.150_{-0.023}^{+0.015}$
$\alpha^{\prime}\left(\mathrm{GeV}^{-2}\right)$	$0.112_{-0.053}^{+0.033}$	$0.111_{-0.064}^{+0.037}$	$0.111_{-0.053}^{+0.038}$
$s_{t}\left(\mathrm{GeV}^{2}\right)$	$16.8_{-0.9}^{+1.7}$	$16.9_{-1.6}^{+2.0}$	$16.9_{-1.1}^{+2.0}$
$b_{0}\left(\mathrm{GeV}^{-2}\right)$	$1.01_{-0.29}^{+0.47}$	$1.02_{-0.32}^{+0.61}$	$1.03_{-0.31}^{+0.49}$
$\mathcal{B}_{\psi p}(95 \% \mathrm{CL})$	$\leq \mathbf{2 9} \%$	$\leq \mathbf{3 0} \%$	$\leq \mathbf{2 3} \%$

Spin-3/2 case

Branching ratio and fit results

Branching ratio $P_{c}(4450) \rightarrow J / \psi p$ not yet known We gave the first prediction for its upper limit!

$\sigma_{s}(\mathrm{MeV})$	0	60	120
A	$0.152_{-0.024}^{+0.032}$	$0.150_{-0.034}^{+0.043}$	$0.150_{-0.041}^{+0.044}$
α_{0}	$1.154_{-0.020}^{+0.020}$	$1.156_{-0.028}^{+0.027}$	$1.156_{-0.028}^{+0.033}$
$\alpha^{\prime}\left(\mathrm{GeV}^{-2}\right)$	$0.120_{-0.054}^{+0.064}$	$0.125_{-0.089}^{+0.076}$	$0.126_{-0.077}^{+0.070}$
$s_{t}\left(\mathrm{GeV}^{2}\right)$	$16.6_{-1.1}^{+1.6}$	$16.6_{-1.5}^{+2.2}$	$16.6_{-2.0}^{+2.1}$
$b_{0}\left(\mathrm{GeV}^{-2}\right)$	$0.95_{-0.51}^{+0.51}$	$0.90_{-0.65}^{+0.85}$	$0.90_{-0.69}^{+1.00}$
$\mathcal{B}_{\psi p}(95 \% \mathrm{CL})$	$\leq \mathbf{1 7} \%$	$\leq \mathbf{1 2} \%$	$\leq \mathbf{8} \%$

Spin-5/2 case

The meson sector: $X Y Z$

- Many unexpected structures decaying into $c \bar{c}+$ light \Longrightarrow Hardly reconciled with quarkonium interpretation See talk by A. Pilloni
- It is not possible to explore $c \bar{c} q \bar{q}$ mesons at JLab But: $s \bar{s} q \bar{q}$ yes. $Y(2175), \ldots$

Resonances beyond the 3-constituent quark models

- After observing a new state: study the Q^{2} dependence of the electrocouplings and the hadronic decays
- Complex interplay: 3 constituent quarks \leftrightarrow meson-baryon cloud ($q \bar{q}$)(qqq)
- Strongly dependent on N^{*} quantum numbers
- New direction: $(q \bar{q})(q q q)$ quark core

